THE EVOLUTION OF CANALICULATE RUDISTS IN THE LIGHT OF A NEW CANALICULATE POLYCONITID RUDIST FROM THE ALBIAN OF THE CENTRAL PACIFIC

by SHIN-ICHI SANO1*, YASUHIRO IBA2, PETER W. SKELTON3, JEAN-PIERRE MASSE4, YOLANDA M. AGUILAR5 and TOMOKI KASE6

1Fukui Prefectural Dinosaur Museum, Katsuyama, Fukui 911-8601, Japan; e-mail: ssano@dinosaur.pref.fukui.jp
2Department of Natural History Sciences, Hokkaido University, N10 W8, Sapporo, 060-0810, Japan; e-mail: iba@mail.sci.hokudai.ac.jp
3Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes, MK7 6AA, UK; e-mail: peter.skelton@open.ac.uk
4Aix-Marseille Université, CEREGE, Centre Saint-Charles, 13331, Marseille Cedex 03, France; e-mail: masse@cerge.fr
5Mines and Geosciences Bureau, North Avenue, Diliman, Quezon City, 1101, Philippines; e-mail: yolagu@yahoo.com
6Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan; e-mail: kase@kahaku.go.jp
*Corresponding author

Typescript received 31 October 2013; accepted in revised form 16 December 2013

Abstract: A new polyconitid rudist, Magallanesia canaliculata gen. et sp. nov., of probably late Albian age, is described from the Pulangbato area, central Cebu Island, the Philippines in the western Central Pacific and Takuyo-Daini Seamount, now located in the Northwest Pacific. It is similar to Praecaprotina Yabe and Nagao, 1926, a Japanese–Central Pacific endemic genus of late Aptian–early Albian age, but differs in having canals that developed by partitioning of the large ectomyophoral cavity in the posterior part of the left valve. Its discovery strengthens the evidence for Pacific endemism in Albian times. Several other clades of canalicate rudists flourished or evolved at the same time in different regions of the Tethyan Realm, suggesting the presence of common global biological and/or environmental factors stimulating the evolution of the canals despite such endemism. Furthermore, the finding of a canalicate polyconitid provides evidence in favour of the evolutionary hypothesis of a polyconitid origin for the Late Cretaceous canalicate rudist family Plagioptychidae Douvillé, 1888.

Key words: Polyconitidae, Plagioptychidae, Magallanesia gen. nov., pallial canals, Cebu Island, Takuyo-Daini Seamount.

SPATIO-TEMPORAL change in the distribution of rudists and other Tethyan biota provides clues for reconstruction of the palaeobiogeographical and palaeoclimatic history of the Cretaceous Pacific (Iba and Sano 2007, 2008; Iba et al. 2011a, c). Recently, Masse and Shiba (2010) proposed the presence of a Japanese—Western Pacific Province in the Aptian–Albian based on endemic rudists, such as the two species of the polyconitid genus Praecaprotina Yabe and Nagao, 1926: one, P. kashimae Masse and Shiba, 2010 known only from Daiichi-Kashima Guyot, probably located in the Central Pacific during the mid-Cretaceous, and the other, the type species P. yaqgashii (Yehara 1920), from Japan. That conclusion was further reinforced by the recognition of three more, as yet unnamed Albian polyconitid taxa from the Japanese Seamounts and Cebu Island in the Philippines by Skelton et al. (2013). The endemism of the Tethyan biota and related palaeoceanographical conditions of the North to Central Pacific during the Albian are thus important considerations for future research on Cretaceous palaeobiogeography and palaeoclimatology.

The present article formally names and describes the first of the new taxa ('Polyconitid new taxon 1') recognized by Skelton et al. (2013) and discusses its particular implications for rudist phylogeny and palaeobiogeography. Formal descriptions of the other new taxa will follow in a later publication. The presence of a canalicate rudist in Cebu Island in the Philippines was first reported by Wolcke and Scholz (1988). They considered this rudist to be an early Aptian Amphitriscoelus sp., and discussed its palaeobiogeographical significance. Later, Masse et al. (1996) revised its age to late Albian, based on the accompanying orbitolinid foraminifers and calcareous algae, and mentioned a questionable similarity of the Cebu rudist to the genus Pachytraga Paquier, 1900, to which another Japanese form, Pachytraga japonica Okubo in Okubo and...
Matsushima, 1959, had previously also been referred. However, the latter species was subsequently re-assigned to the late Aptian–early Albian Praecaprotina (Skelton and Masse 1998). Meanwhile, further systematic and palaeobiogeographical studies of the Cebu rudist awaited completion.

GEOLOGICAL SETTING

The current Philippine Archipelago was located in the western equatorial Pacific during the Cretaceous Period (Honzá and Fujioka 2004). Shallow marine carbonate sediments of the island arc system have been reported in the islands of Cebu and Catanduanes, and in the Caramoan Peninsula of Luzon Island by previous studies (Wolcke and Scholz, 1988; Militante-Matias 1995; Masse et al. 1996). Besides late Aptian orbitolinid assemblages from north-western Cebu and the Caramoan Peninsula (Militante-Matias 1995), a rudist ‘Pachytragia’ (= Magallanesia canaliculata gen. et sp. nov., herein), corals, stromatoporoids, calcareous red algae and orbitolinid foraminifers have also been reported from the Upper Albian of central Cebu Island (Masse et al. 1996).

In a collaborative palaeontological research project of the National Museum of Nature and Science, Tokyo, and the Mines and Geosciences Bureau, Philippines, the exact locality of the rudist-bearing limestone in Cebu Island was identified, allowing two of us (YI and SS) to collect additional rudist material from reddish tuffaceous limestones there. The rudist specimens described herein were recovered from carbonate sediments exposed along the Butuanon River in the Pulangbato area, central Cebu Island (N: 10°23.916′, E: 123°53.684′; Fig. 1), which is probably the same as, or very close to, the locality reported by Masse et al. (1996). The carbonate unit, 9.7 m thick, is intercalated in a volcaniclastic sequence at this locality and cannot be considered an olistolith in the melange-type sequence. It contains abundant rudist individuals (mainly a few genera of polyconitids, but also a requieniid), corals, stromatoporoids and orbitolinid foraminifers with volcaniclastics in its matrix. They represent autochthonous occurrences and probably form a biostrome in the volcaniclastic sequence. Rudists are especially abundant in the lower part of the carbonate sequence. Late Albian orbitolinid foraminifers of the Mesorbitolina texana (Roemer, 1849) group and Neorbitolina conulus (Douvillé, 1912) were reported from this carbonate unit by Masse et al. (1996).

In addition, another specimen of the same taxon was discovered among samples dredged from Takuyo-Daini Seamount in the Japanese Seamounts, now located in the Northwest Pacific, but situated in the central equatorial Pacific at the time of formation (Skelton et al. 2013). The age of the rudist-bearing limestone of Takuyo-Daini Sea-

RESULTS AND DISCUSSION

Investigation of collected samples and field photographs reveals that the Cebu rudist, *Magallanesia canaliculata* gen. et sp. nov., here described, is indeed a polyconitid rudist, similar to Praecaprotina (most particularly, *P. yagashii*) but differing in having canals developed by partitioning of the posterior ectomyophoral cavity of the left valve (see Systematic Palaeontology section). In addition, a single specimen of the same taxon from Takuyo-Daini Seamount (Guyot) in the Japanese Seamounts, now located in the Northwest Pacific, was also discovered among dredged Pacific rudist samples in the Masse/Winterer collection of Scripps Institution of Oceanography (SIO), Université de Provence, Marseille, France (M/W coll.; see Systematic Palaeontology section).

Origin of the Cebu canaliculate rudist

Magallanesia canaliculata gen. et. sp. nov. lacks canals in the ventral shell wall, representing a primitive stage of
canal development by analogy with other canaliculate taxa. Thus, *M. canaliculata* itself probably originated from a noncanaliculate taxon. Besides its canals, the diagnostic characters of *M. canaliculata* are: (1) subequal teeth in left valve (LV) straddling a straight, erect central tooth in right valve (RV); (2) posterior myophoral plate in LV, flanked behind by an ectomyophoral cavity, projecting into a broad posterior cavity in the RV, where it faces inwards onto an erect (steeply backwardly tilted) posterior myophoral wall in the latter valve; and (3) the moderately thickened outer shell layer of the RV. The first of these last three features is characteristic of all Polyconitidae, while the other two are typical of advanced forms, including *Praecaprotina* (Fig. 2), described from late Aptian deposits in Tohoku and Hokkaido areas in Japan (*P. yaegashii*: Yabe and Nagao 1926; Skelton and Masse 1998; Skelton and Smith 2000; Skelton *et al.* 2013) and late Aptian – early Albian limestone of Daiichi-Kashima Seamount (*P. kashimae*). It is worth noting, in passing, that characters 1 and 2 above, relating to the dentition and the posterior myophore, respectively, are also recognized in polyconitid new taxa 2 and 3 of Skelton *et al.* (2013), who supposed that these co-provincial taxa were likewise derived from *Praecaprotina* (though, their possession of character 3 has yet to be verified, as the outer shell layer is not preserved in the investigated specimens). In *Magallanesia* gen. nov., the addition of a number of thin radial partitions in the broad ectomyophoral cavity of the LV gave rise to the single row of large, simple canals there. Thus, it can be interpreted as a derivative of *Praecaprotina*, most probably *P. yaegashii*, with which it shows the greater similarity in external shell form and size (compare Figs 2, 4), indicating that the latter gave rise to a distinct lineage of canaliculate rudists, probably endemic in the Pacific in the late Albian. It should be noted that an analogous mode of canal development, namely achieved by the subdivision of large ectomyophoral cavities, has already been proposed for *Neocaprina* of the Caprinulidae Yanin, 1990 by Steuber and Bachmann (2002, p. 745), who noted that “in *Neocaprina* from Sinai, the shells are delicate, and canals are large and frequently of subrectangular shape. This suggests that the large posterior canals in the LV of *Neocaprina* are formed by the subdivision of large ectomyophoral cavities, and that the LV posterior myophore was not rooted directly on the posterior shell wall, as has been shown for the Caprininae”. A similar mode of canal formation in spaces external to the myophores can again be seen among certain Late Cretaceous radiolitids with a domed LV, such as *Colveria* Klinghardt, 1921. Hence, partitioning of ectomyophoral cavities of various kinds can be considered as a frequently repeated (homomorphic) developmental pathway towards the evolution of pallial canals in rudists.

The cladogram shown in Figure 3 (see Appendix and Sano *et al.* (2014) for character analysis) summarizes the phylogenetic position of *Magallanesia* gen. nov. within the polyconitid clade, as proposed here, based on the characters discussed above, together with selected representatives of other canaliculate groups for comparison. As already established in the analysis of Skelton and Smith (2000), the caprinoid clade is shown here to be clearly distinct from the main radiolitoid clade, which encompasses the remaining uncoiled rudists including the polyconitids and their derivatives (Skelton 2013). In the present analysis, two most parsimonious trees (of 29
steps) were found, differing only slightly with respect to the position of the caprinulid pairing of *Sellaea* Di Stefano, 1889 and *Neocaprina*. The preferred option shown here designates the latter pairing as, itself, a sister group to another combining *Magallanesia* gen. nov. and *Plagiopychus* Matheron, 1842. The alternative tree, by contrast, identifies the former pairing as one branch of an unresolved trichotomy with the last two taxa, united by possession of posterior ectomyophoral canals but thereby involving the secondary loss of the radial partitions in *Sellaea*, which we regard as unlikely. Thus, the caprinulids, according to this analysis, may possibly constitute another stock of canaliculate rudists derived from *Praecaprotina* or some allied form (with secondary thinning of the outer shell layer). Inclusion of *Himeraelites* Di Stefano, 1889 in the phylogenetic analysis, however, calls for a re-appraisal of the previously assumed kinship between *Himeraelites* and the *Sellaea–Neocaprina* lineage, both of which were included in the Caprinulidae (Skelton 2013). It yields a number of equally parsimonious trees some of which do group *Himeraelites* with *Sellaea* and *Neocaprina*, while others separate it from them – an ambiguity that must be addressed in a later publication. What is nevertheless reasonably clear from the present analysis is the independent evolution of pallial canals in the three canaliculate clades (*Magallanesia* gen. nov., the caprinulids and the caprinoids) considered here.

Late Albian global diversification of canaliculate rudists

In the late Albian, several canaliculate taxa belonging to different lineages flourished or evolved in different regions, including: (1) several genera of the Caprinuloidae Damestoy, 1971 in the Caribbean (Scott and Filkorn 2007; Mitchell 2013a) and possibly Central Pacific (Swinburne and Masse 1995); (2) *Caprina choffati* Douvillé, 1898 and *Caprina mulleri* Hamilton, 1956 of the Caprinidae d’Orbigny, 1847 in the western Mediterranean Tethys and Central Pacific, respectively (Douvillé 1898; Hamilton 1956; Chikhi-Aouimeur 2003; Skelton et al. 2011, 2013); (3) *Neocaprina rughaniensis* Steuber and Bachmann, 2002 and *N.?* sp. of the Caprinulidae, and probably *Ichthyosarcolites* Desmarest, 1817 of the Ichthyosarcolitidae Douvillé, 1887 in Egypt, in the Middle Eastern Tethyan Province (Steuber and Bachmann 2002), the latter family having already arisen in the Caribbean by the mid-Albian (Mitchell 2013b); and (4) *M. canaliculata* gen. et sp. nov. of the Polyconitidae in the Central Pacific. The presence of different canaliculate rudists in each
region reflects the development of rudist endemism within the Tethyan Realm at that time. On the other hand, it should be noted that at least three lineages of canaliculate rudists existed in the Central Pacific in the late Albian, highlighting the importance of the region for rudist diversification in the mid-Cretaceous.

Neocaprina Pleniaric, 1961 and *Magallanasia* gen. nov. first appeared in the late Albian, and *Ichthyosarcolites* in the middle Albian. The acme of the caprinuloideid diversification was in the late Albian. Although *Caprina* d'Orbigny, 1822 has a longer history compared with other lineages, starting from the Barremian, it revived in the late Albian following a long absence from the fossil record of the upper Aptian and most of the Albian (Skelton et al. 2013). The late Albian can thus be considered as a notable period of polyphyletic diversification and/or origination of canaliculate rudists. The nature of the implied influence of some common biological and/or global environmental factor(s) on the evolution of canals in different rudist lineages at the time remains an issue that should be addressed in future studies.

Implications for the hypothesis of polyconitid origin of the Plagioptychidae

Although the origin and phylogenetic development of canals have been discussed in detail for the Caprinidae and Caprinuloideidae (Skelton and Masse 1998) and the Caprinulidae (Steuber and Bachmann 2002), the origins of other canaliculate rudists, especially the Late Cretaceous families (the antillocaprinids, the trechmannellids, the plagioptychids and some of the radiolitids), remain less precisely resolved (Skelton 2003, 2013).

Cladistic analysis of rudists by Skelton and Smith (2000) has suggested a polyconitid origin for the plagioptychids. Now the derivation of the Plagioptychidae Douville, 1888, from *M. canaliculata* gen. et sp. nov., or a related form (Fig. 3) can be supposed to have been accomplished through ventralward extension of canals around the margin of the left valve, via a mode of canal development analogous to that within the Caprinulidae (Steuber and Bachmann 2002; Skelton 2013). With respect to canal development, the caprinulid *Sellaea*, which has a large ectomyophoral cavity without multiple radial partitions, corresponds homoplasiouly to *Prac carpoluta* of the Polycoritidae, primitive *Neocaprina* to *Mag allasenia* gen. nov., advanced *Neocaprina* to *Plagioptychus*, and *Caprina* d’Orbigny, 1847 to *Mitrocaprina* Boehm, 1895. On the other hand, as Skelton (2013) pointed out the similarity of myocardinal arrangements between the polyconitids and the plagioptychids, anagenetic evolution of the above-mentioned polyconitids and plagioptychids is more likely than the alternative hypothesis of convergent acquisition of canals in these two families. Thus, *Magallanasia* gen. nov. may provide further evidence in favour of the evolutionary hypothesis of a polyconitid origin for the plagioptychids. However, a significant stratigraphical gap remains between *Magallanasia* gen. nov. (upper Albian) and the first plagioptychid, *Plagioptychus haueri* (Teller, 1877) from the Czech Republic and Austria (lower Turonian: Steuber 2004). Furthermore, it should be noted that there are almost no records so far of rudists or other Tethyan biota in the Pacific from the Cenomanian – early Campanian time interval (Iba and Sano 2007, 2008; Iba et al. 2011a, b; Skelton et al. 2013), although the Plagioptychidae show a cosmopolitan distribution including the Pacific in the late Campanian – Maastrichtian record (Premoli-Silva et al. 1995; Steuber 2004). Much of the early evolutionary history of the Plagioptychidae thus remains to be filled in – a quest in which regions around the Pacific can be expected from the present study to play a prominent role.

SYSTEMATIC PALAEONTOLOGY

This published work and the nomenclatural act it contains have been registered in Zoobank: http://www.zoobank.org/References/urn:lsid:zoobank.org:pub:568F55BE-F54E-4068-B169-86F6CE0889B4.

Superfamily RADIOLITOIDEA d'Orbigny, 1847
Family POLYCONITIDAE Mac Gillavry, 1937

Genus MAGALLANESIA gen. nov.

LSID. urn:lsid:zoobank.org:act:315D8BEC-60D2-413E-8673-B36D0EE393DE

Type species. *Magallanasia canaliculata* sp. nov., by monotypy.

Derivation of name. Dedicated to Ferdinand Magellan (in Spanish: Fernando de Magallanes), a Portuguese explorer, who led the Spanish expedition in the early sixteenth Century in search of a westward route from Europe to Asia, known as the first circumnavigator of the Earth. He discovered the route to the huge ocean behind the American continents and named that ocean as 'the Pacific', crossed it and finally arrived at Cebu Island in the Philippines where he died. As Magellan's expedition, the lineage for the Cebu rudist, the Polyconitidae, is also supposed to have originated in the western Mediterranean Tethys, and to have
entered the equatorial Pacific, evolving new taxa there. Although the famous explorer is better known across the world by the anglicized form of his name, 'Magellan', the genus name derived from it is preoccupied (by the extant terebratulide brachiopod *Magellania* Bayle, 1880), so we have chosen the Spanish form of his name, 'Magallanes', as the root for the new genus erected herein, to avoid confusion.

Diagnosis. Large-sized polyconitid (antero-posterior commissural diameter reaches about 15 cm) with a single row of large, simple pallial canals of radially elongate oval to rounded-subrectangular cross-sectional shape in the posterior part (behind posterior myophore) only of LV. Attached RV of wide conical to cylindrical form; LV capuloid in shape; commissural outline subrounded to subquadrate, usually somewhat compressed dorso-ventrally, with gently indented ventral margin; subequa teeth in LV straddling straight and erect central tooth in RV; anterior myophores forming broad comarginal thickenings, tilted so as to leave a broad but shallow accessory cavity separating the myophore from the anterior shell wall in LV; posterior myophore of LV projecting into broad posterior ectomophoral cavity in RV, and facing in towards posterior myophoral wall in RV.

Comparisons. Development of a single row of large, simple canals only in the posterior shell part of the LV is the most notable character of *Magallanesia* gen. nov. Absence of canals in the ventral shell wall is uncommon in most taxa of canaliculate rudists and can be considered primitive by analogy with the progressive evolution of canals in the early caprinids of the Hauterivian – early Aptian (*Skelton and Masse 1998*), caprinuloideids of the Barremian – Albian (Mitchell 2013) and the late Albian *'Coalcomanid indet. 1'* (Swinburne and Masse 1995) likewise share the distinctive absence of canals in the ventral shell wall of the LV with *Magallanesia* gen. nov. However, these caprinuloideids, with the exception of Barremian species of *Pantojalaria*, again consistently have canals not only in the posterior shell wall, but also in the anterior shell wall of the LV. Primitive *Pantojalaria*, namely *P. pennyi* (Harris and Hodson, 1922) and *P. estanciensis* Pantoja-Alor et al., 2004, may have up to a few subrounded pallial canals, only, in the anterior shell wall of the LV (Pantoja-Alor et al. 2004; Masse et al. 2013). In contrast, the Osaka new caprinuloideid and *'Coalcomanid indet. 1'* even develop additional polygonal canals in the shell.

Furthermore, the subequa teeth in the LV and a moderately thickened outer shell layer in the RV in *Magallanesia* gen. nov. are relatively derived character states that contrast with the primitively unequal teeth (posterior markedly smaller than the anterior) and thin outer shell

Among early taxa of the Caprinidae *Praeaprina* Paquier, 1905 and *Offneria simplex* Chartrousse and Masse, 1998a show the primitive condition of absence of canals in the ventral shell wall. However, the former genus develops the canals also in the anterior shell part of the LV, and the latter also in the anterior and dorsal shell wall of the LV, as well as in the RV. Species of the Caprinidae coeval with *Magallanesia* gen. nov., namely *C. choiffati* from the western Mediterranean Tethys and *C. mulleri* from the Mid-Pacific Mountains, have canals in the posterior, postero-dorsal, and ventral shell walls of the LV (Skelton et al. 2013).

In the Caprinuloideidae the Barremian – early Aptian *Amphiriscoelus* Harris and Hodson, 1922, Barremian – early Aptian *Pantojalaria* Alencâster (in Alencâster and Pantoja-Alor, 1996), early Aptian *Conchemporia* Chartrousse and Masse, 1998b, Aptian Osaka new caprinuloideid (Sano 2012; Mitchell 2013a; Skelton et al. 2013) and late Albian *'Coalcomanid indet. 1'* (Swinburne and Masse 1995) likewise share the distinctive absence of canals in the ventral shell wall of the LV with *Magallanesia* gen. nov. However, these caprinuloideids, with the exception of Barremian species of *Pantojalaria*, again consistently have canals not only in the posterior shell wall, but also in the anterior shell wall of the LV. Primitive *Pantojalaria*, namely *P. pennyi* (Harris and Hodson, 1922) and *P. estanciensis* Pantoja-Alor et al., 2004, may have up to a few subrounded pallial canals, only, in the anterior shell wall of the LV (Pantoja-Alor et al. 2004; Masse et al. 2013). In contrast, the Osaka new caprinuloideid and *'Coalcomanid indet. 1'* even develop additional polygonal canals in the shell.

FIG. 4. *Magallanesia canaliculata* gen. et sp. nov. from the Pulangbato area, central Cebu Island, the Philippines and Takuyo-Daini Seamount, Japanese Seamounts in the Northwest Pacific. A–D, specimens from the Pulangbato area, central Cebu Island, the Philippines. A, photograph of natural transverse section of LV taken at the outcrop; adpal view. Note the polyconitid-type myocardinal arrangements (compare with Fig. 2), gently indented ventral margin, and the presence of a single row of large, simple, rounded-subrectangular canals around the posterior shell margin. B, paratype (NMP-1375); LV, adpal view. Note that the section in the posterior part is oblique to that in the anterior-central part of the valve on this photograph. C, holotype (NMP-1376); natural transverse section of RV near the commissure, with elements of the LV, including the anterior tooth (at) and posterior tooth (pt) in their respective sockets and the posterior myophore (pm) with ectomophoral canals in the posterior myophoral cavity. Adpal view. Note shallowly invaginated ligament (l) and moderately thickened outer shell layer (ol) in RV. D, photograph of natural antero-posterior section (oblique to the commissure) of both valves taken at the outcrop. Note capuloid LV and broad cylindrical RV in section. Posterior myophore of LV projects into the broad posterior cavity of RV and faces inwards on to erect (steeply backward tilted) posterior myophoral wall in RV. Note the presence of large canals in the ectomophoral cavity situated in the posterior part of LV. E–F, LV (M/W coll., A5 D39-F2) of *Magallanesia canaliculata* gen. et sp. nov. from the Takuyo-Daini Seamount, Japanese Seamounts in the Northwest Pacific. Outer shell layer missing. E, posterior view of valve, showing exposed canals in the large ectomophoral cavity (ecc). F, internal view. Adpal view. Note the polyconitid-type myocardinal arrangements and gently indented ventral valve margin, lacking canals. See Figure 2 caption for abbreviations. Scale bars represent 10 mm.
layer of the Caprinooidea d’Orbigny, 1847 in general (Skelton 2013).

Neocaprina raghawiensis and N.? sp. of Steuber and Bachmann (2002) have a single row of large canals of more or less rectangular cross-sectional form, divided by narrow radial laminae and of somewhat broader aspect than those of Magallanesia gen. nov. Moreover, these canals develop not only in the posterior shell wall but, as with the caprinoids, also along the antero-dorsal shell wall. In addition, Neocaprina also lacks the thickening of the outer shell layer of the RV seen in Magallanesia gen. nov.

On the other hand, several derived character states in Magallanesia gen. nov., namely, subequal teeth in the LV straddling an erect, straight central tooth in the RV, a posterior myophoral plate in the LV flanked posteriorly by an ectomyophoral cavity and projecting into a broad posterior ectomyophoral cavity in the RV, and a moderately thickened outer shell layer in the RV, strongly suggest polycotid affinity (Skelton 2013). Thus, Magallanesia can be considered as a new taxon of canaliculate rudist in the Polyconitidae. Its relationships within the latter family and in particular with the noncanaliculate but closely similar Praecaprotina is discussed in a previous section (‘Origin of the Cebu canaliculate rudist’).

Age and distribution. Late Albian for the rudist locality in Cebu Island, the Philippines, and Aptian–Albian for the rudist-bearing limestone of Takuyo-Daini Seamount in the Japanese Sea-mounts. Both localities were located in the Central Pacific in Aptian–Albian times. As the age of the Takuyo specimen is only roughly estimated, but Magallanesia gen. nov. has relatively derived characters compared with other Aptian–Albian polycotids, we judge that a late Albian age is more likely for this new rudist genus, based on currently available evidence.

Magallanesia canaliculata sp. nov.

Figure 4

1996 Rudist; Masse et al., pp. 973–974, 978.
1998 Coalcomaninae? indéter. 3; Chartrousse, p. 196–197, plate 36, figs 5, 6.
2013 Polycotid new taxon 1; Skelton et al., p. 519, fig. 6d, e, table 1.

Derivation of name. According to the notable shell character of this taxon, having canals in the posterior shell wall of the LV.

Holotype. RV with parts of posterior tooth and myophore of LV inserted into the corresponding cavities in the RV, shown in a natural transverse section (NMP-1376, Fig. 4C; =Skelton et al. 2013, fig. 6e).

Paratype. LV showing natural transverse section (NMP-1375, Fig. 4B).

Additional materials. Natural transverse sections of several individuals, photographed at the type locality (e.g. Fig. 4A, D). Also, LV (M/W coll., A5 D39-F2) recovered from the Takuyo-Daini Seamount (Fig. 4E–F).

Type locality. Pulangbato area, central Cebu Island, the Philippines (N: 10°23.916′, E: 123°53.684′; Fig. 1).

Diagnosis. As for genus.

Description. The attached RV (Fig. 4C–D) is apparently of wide conical to cylindrical form; the LV is prominently capuloid in shape (Fig. 4D). Commissural outline is subrounded to subquadratc, usually somewhat compressed dorso-ventrally (antero-posterior commissural diameter is larger than dorso-ventral one), with very shallowly indented ventral sulcus (Fig. 4A–C, F). Outer shell layer of RV is moderately thick (up to 5 mm), and its inner shell is compact, without canals (Fig. 4C–D). In the LV, a single row of several (up to 12), large canals, which are separated by thin partitions, is developed along the posterior shell wall, behind the posterior myophore; the moderately close spacing of the partitions gives the canals a radially elongate oval to rounded-subrectangular aspect in transverse section (Fig. 4A–E). Ligament of RV is shallowly invaginated (Fig. 4C).

Subequal teeth (anterior tooth larger than posterior tooth) in LV straddle a straight and erect central tooth in RV (Fig. 4A–C, F). Salient ridge connects anterior tooth to inner margin of posterior myophore, separating central tooth socket from body cavity (Fig. 4A, F). Anterior myophores in LV and RV are broad comarginal thickenings (Fig. 4A–D, F); that in LV adjoins anterior tooth dorsally and passes to ventral shell wall, with a shallow accessory cavity or gutter separating it from the anterior shell wall (Fig. 4A–B, F); the corresponding myophore in the RV is shown to be nearly flat in antero-posterior section (Fig. 4D). Posterior myophore of LV connects to posterior tooth and to ventral margin of shell; it has a broad appearance (much wider than posterior tooth) in transverse section and is separated from posterior shell margin by a broad ectomyophoral cavity subdivided by radial laminae into the simple canals described above (Fig. 4A–B, F). In antero–posterior section, posterior myophore of LV projects into the broad posterior cavity of RV and faces inwards onto erect, steeply backwardly tilted posterior myophoral wall in RV (Fig. 4D). Posterior ectomyophoral cavity in RV is large, adjoining posterior tooth socket dorsally and extending ventrally subparallel to valve margin (Fig. 4C).
Remarks. A single LV (M/W coll., STYX D17 F-1, illustrated by Skelton et al. (2013, fig. 6f therein), from Darwin Seamount (Guyot) in the Mid-Pacific Mountains, is possibly attributable to *Magallanesia* gen. nov., as it likewise shows subdivision of the posterior ectomyophoral cavity by radial laminae to form simple pallial canals within it. However, it differs slightly from the Cebu and Takuyo-Daini specimens in being somewhat smaller and dorso-ventrally elongate instead of having a rounded to subquadrate commissural plan. Its stratigraphical level is unrecorded, and additional materials are necessary to confirm its systematic placement.

Age and distribution. As for genus.

Acknowledgements. We thank the Regional Office No. VII, Mines and Geosciences Bureau, Republic of the Philippines and its staff: Abraham R. Lucero, Jr. and Remegio Colonia, Jr. for their support during our field survey in the Cebu Island. Thanks are extended to Kazushige Tanabe (The University Museum, the University of Tokyo, Japan) for reading an early version of the manuscript. We would like to thank the reviewers, Thomas Steuber (Petroleum Institute, UAE) and an anonymous reviewer, as well as Andrew B. Smith, John W. M. Jagt and Sally Thomas as editors for their constructive comments and suggestions for the manuscript. This research was supported by a Japan Society for the Promotion of Science (JSPS) Research Grant (nos 25800285 and 23840002 for YI).

DATA ARCHIVING STATEMENT

Data for this study are available in the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.hm021.

Editor. John Jagt

REFERENCES

SANO ET AL.: ALBIAN CANALICULATE POLYCONITID RUDIST FROM THE PACIFIC 959
APPENDIX: CHARACTER DATA

Character data for phylogenetic analysis of *Magallanesia canaliculata* gen. et sp. nov. and of other selected canaliculate forms. For detailed descriptions of character states, see Skelton and Masse (1998), Skelton and Smith (2000), Skelton (2013), and Steinburch et al. (2013) and herein.

Abbreviations. at, anterior tooth; bc, body cavity; ct, central tooth; ecc, ectomyophoral cavity; enc, endomyophoral cavity; LV, left valve; pt, posterior tooth; RV, right valve.

Right valve (RV) outer shell layer

01. Outer shell layer thickness: 0, thin (up to c. 1 mm, cf., *Diceras*); 1, thickened (to 2 mm or more).

Left valve (LV) shape

02. 0, umbo extended capuloid/enrolled; 1, depressed (low-domed to operculiform).

Dentition

03. LV teeth: 0, pt considerably smaller than at; 1, pt enlarged (subequal or equal to at).

04. RV teeth: 0, ct curved conspicuously around dorsal side of at; 1, ventral part of ct prominent, forming erect wedge-like ridge oriented subperpendicular to dorsal margin, with reduced dorsal end sharply tapered around at.

Posterior myophores and associated accessory cavities

05. Position of LV myophore: 0, lying flush on myocardinal platform; 1, rooted on posterior valve wall (with or without bounding narrow ectomyophoral gutter or pallial canals) and separated from bc by large ecc; 2, myophore distinctly separated from posterior valve wall by wide ecc (which may or may not be subdivided), and partially from bc by small enc forming ventral appendix to socket for ct.

06. Orientation of muscle insertion surfaces: 0, plane into LV and facing back onto inner surface of RV myophore (= caprinid configuration); 1, on posterior surface of strongly projecting LV myophore (= derived polyconitid and caprinulid configuration); 2, on steep posterior surface of strongly projecting LV myophore, facing back onto depressed inner surface of RV myophore (= caprinuloid configuration); 3, on anterior surface of projecting LV myophore, reflected so as to face down onto depressed inner surface of RV myophore.
07. LV ecc: 0, absent or narrow gutter only; 1, cavity undivided; 2, cavity may be subdivided by a radial lamina; 3, cavity subdivided by several widely spaced radial laminae to yield large pallial canals of more or less rectangular cross-sectional form; 4, cavity subdivided by numerous moderately closely spaced radial laminae to yield pallial canals of radially elongate oval to rounded subrectangular cross-sectional form.
08. RV ecc: 0, absent; 1, narrow and comarginally elongated; 2, broad.
09. RV enc: 0, absent; 1, present, separated from bc by narrow lamina.

Anterior myophores
10. 0, flat or gently tilted on myocardinal platform; 1, LV myophore tilted up against at and separated from anterior valve margin by broad but shallow depression; 2, LV myophore tilted up against at and separated from anterior valve margin by deep accessory cavity (which may be subdivided).

Distribution of pallial canals
11. LV: 0, none (or sparsely present in some specimens only); 1, around both anterior and posterior valve margins but not continuing around entire ventral margin; 2, continuous around anterior, ventral and posterior valve margins.
12. RV: 0, none (or sparsely present in some specimens only); 1, around both anterior and posterior valve margins, but not continuing around entire ventral margin.

TABLE A1. Character matrix for selected rudist taxa.

<table>
<thead>
<tr>
<th>Taxon/Character</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgroup</td>
<td></td>
</tr>
<tr>
<td>Valletia</td>
<td>0</td>
</tr>
<tr>
<td>Caprinoida</td>
<td></td>
</tr>
<tr>
<td>Pachytraga</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Praecaprina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Retha</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amphitriscoelus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Radiolitoida</td>
<td></td>
</tr>
<tr>
<td>Monopleura</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Horiopleura</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polyconites</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Praecaprotina</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Magallanesia</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plagioptychus</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Sellaea</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neocaprina</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Based on: Valletia tombecki Munier-Chalmas, 1873; Pachytraga tubiconcha Astre, 1961; Praecaprina variaus Paquier, 1905; Retha tulae (Felix, 1891); Amphitriscoelus primaevus Pantoja-Alor, Skelton and Masse, 2004; Monopleura varians Matheron, 1842; Horiopleura lumberti (Hébert, 1867); Polyconites verneulii (Coquand, 1865); Praecaprotina yaegashii (Yehara, 1920); Magallanesia canaliculata gen. et sp. nov.; Plagioptychus toucasi Matheron, 1842; Sellaea/’Caprotina’ species-group of Di Stefano (1889); Neocaprina raghawiensis Steuber and Bachmann, 2002.